Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunity ; 44(3): 659-671, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26982366

RESUMO

Interleukin-17 (IL-17) and IL-17 receptor (IL-17R) signaling are essential for regulating mucosal host defense against many invading pathogens. Commensal bacteria, especially segmented filamentous bacteria (SFB), are a crucial factor that drives T helper 17 (Th17) cell development in the gastrointestinal tract. In this study, we demonstrate that Th17 cells controlled SFB burden. Disruption of IL-17R signaling in the enteric epithelium resulted in SFB dysbiosis due to reduced expression of α-defensins, Pigr, and Nox1. When subjected to experimental autoimmune encephalomyelitis, IL-17R-signaling-deficient mice demonstrated earlier disease onset and worsened severity that was associated with increased intestinal Csf2 expression and elevated systemic GM-CSF cytokine concentrations. Conditional deletion of IL-17R in the enteric epithelium demonstrated that there was a reciprocal relationship between the gut microbiota and enteric IL-17R signaling that controlled dysbiosis, constrained Th17 cell development, and regulated the susceptibility to autoimmune inflammation.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Bactérias Gram-Positivas Formadoras de Endosporo/imunologia , Intestinos/fisiologia , Receptores de Interleucina-17/metabolismo , Células Th17/imunologia , Animais , Disbiose/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/sangue , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interações Hospedeiro-Patógeno , Imunidade nas Mucosas/genética , Interleucina-17/metabolismo , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Interleucina-17/genética , Transdução de Sinais/genética , Células Th17/microbiologia , alfa-Defensinas/genética , alfa-Defensinas/metabolismo
2.
J Immunol Methods ; 421: 104-111, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25858227

RESUMO

Segmented filamentous bacteria (SFB) are Gram-positive, anaerobic, spore-forming commensals that reside in the gut of many animal species. Described more than forty years ago, SFB have recently gained interest due to their unique ability to modulate the host immune system through induction of IgA and Th17 cells. Here, we describe a collection of methods to detect and quantify SFB and SFB adhesion in intestinal mucosa, as well as SFB-specific CD4 T cells in the lamina propria. In addition, we describe methods for purification of SFB from fecal material of SFB-monoassociated gnotobiotic mice. Using these methods we examine the kinetics of SFB colonization and Th17 cell induction. We also show that SFB colonize unevenly the intestinal mucosa and that SFB adherence occurs predominantly in the terminal ileum and correlates with an increased proportion of SFB-specific Th17 cells.


Assuntos
Infecções por Bactérias Gram-Positivas/imunologia , Bactérias Gram-Positivas Formadoras de Endosporo/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Células Th17/imunologia , Animais , Aderência Bacteriana/imunologia , Fezes/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/imunologia , Simbiose
3.
Anaerobe ; 16(5): 543-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20674754

RESUMO

Segmented filamentous bacteria (SFB) colonize in the ileum. They promote the development of intraepithelial lymphocytes and immunoglobulin A (IgA)-producing cells in the small intestine. In SFB-monoassociated mice, changes in SFB colonization of the small intestine were related to the level of IgA derived from maternal milk during the suckling period and self-produced in the small intestine after weaning. In this study, we investigated whether or not maternal and neonatal IgA influence the colonization of SFB in conventional mice from 18 to 105 days old. The pups were forcedly weaned at 20 days old. SFB could be detected in the distal small intestine after day 22, and their number rapidly reached a maximum on day 28. Thereafter, they gradually declined to one-fourth of the maximum level. The lowest concentrations of IgA in the small intestinal and cecal contents were detected on day 22. Thereafter, they increased as the age of the mice increased. The expression of the polymeric immunoglobulin receptor gene in the distal small intestine increased after weaning. These results suggested that the colonization of SFB in the pre-weaning and post-weaning periods might be prevented with IgA derived from maternal milk and self-produced IgA, respectively.


Assuntos
Bactérias Gram-Positivas Formadoras de Endosporo/imunologia , Imunidade Materno-Adquirida , Imunoglobulina A/metabolismo , Intestino Delgado/microbiologia , Animais , Feminino , Bactérias Gram-Positivas Formadoras de Endosporo/crescimento & desenvolvimento , Intestino Delgado/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
4.
Infect Immun ; 69(6): 3611-7, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11349021

RESUMO

As a member of the indigenous gut mucosal microbiota, segmented filamentous bacteria (SFB) colonize the guts of a variety of vertebrates and invertebrates. They are potent microbial stimuli of the gut mucosal immune system. In the small intestines of mice and rats, it has been observed that SFB are absent during the suckling period and appear in high numbers shortly after weaning, then quickly retreat to the cecum and large intestine. In this study, we explored whether this microecological phenomenon resulted from the interaction between SFB and the passively acquired maternal mucosal immunity and/or the actively acquired mucosal immunity. We set up a mouse model by reciprocal crossings and backcrossings of SFB-monoassociated, formerly germ-free, immunocompetent (+/+) BALB/c mice and immunodeficient (scid/scid) mice to produce pups which are either immunocompetent (scid/+) or immunodeficient (scid/scid) and are born either to immunocompetent (scid/+) mothers or to immunodeficient (scid/scid) mothers. We monitored the number of SFB on the mucosa of the small intestine in the four different groups of mice after birth, as well as the level of passively acquired antibodies, the active gut mucosal immune responses, and immunoglobulin A (IgA) coating of SFB in the gut. The results showed that, irrespective of whether the pups were scid/scid or scid/+, SFB could be found earlier on the mucosa of the small intestine in pups born to scid/scid mothers, appearing from day 13 and rapidly reaching a climax around weaning time on day 28, compared to the significantly delayed colonization in the pups of scid/+ mothers, starting from day 16 and peaking around days 28 to 32. After the climax, SFB quickly declined to very low levels in the small intestines of scid/+ pups of either scid/scid mothers or scid/+ mothers, whereas they remained at high levels in scid/scid pups at least until day 70, the last observation time in this study. The dynamic changes in SFB colonization of the small intestines of the different groups of pups may be related to the dynamic changes in the levels of SFB coated with secretory IgA (sIgA), which resulted from the significantly different levels of sIgA obtained from the mothers' milk during the suckling period and, later, of self-produced sIgA in the small intestine. Nevertheless, it is evident that the timing, localization, and persistence of colonization of the neonatal gut by SFB depends on the immune status of both mothers and pups.


Assuntos
Bactérias Anaeróbias/crescimento & desenvolvimento , Bactérias Gram-Positivas Formadoras de Endosporo/crescimento & desenvolvimento , Imunoglobulina A Secretora/imunologia , Estômago/microbiologia , Animais , Especificidade de Anticorpos , Bactérias Anaeróbias/imunologia , Bactérias Gram-Positivas Formadoras de Endosporo/imunologia , Imunidade Materno-Adquirida , Imunidade nas Mucosas , Imunoglobulina A Secretora/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos SCID , Estômago/imunologia
5.
J Appl Microbiol ; 83(2): 227-35, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9281826

RESUMO

Antigens recognized by monoclonal antibodies (Mabs) raised to the surface of the obligate nematode hyperparasite Pasteuria penetrans were characterized. Using the attachment of spores of the bacterium to host nematodes to determine the biological variability present on the spore surface greatly underestimated the amount of surface heterogeneity present compared with estimates from immunological techniques. This heterogeneity differed not only between different individual spores from the same population but also between different spore populations. None of the Mabs completely inhibited any spore population from attaching to the nematode cuticle, suggesting that the mechanism of attachment may be more complex than previously supposed. Chemical degradation of one particular epitope recognized by monoclonal antibody PP1/117, and designated ep117, occurred after treatment with NaOH, periodate or Proteinase K, suggesting that an O-linked glycoprotein may be involved. Fibronectin, which had been found to bind to Pasteuria spores through hydrophobic interactions, also prohibited the Mab from recognizing ep117. However, SDS-PAGE of spore extracts followed by immunoblotting showed that none of the Mabs could detect this epitope and so ep117 may be conformational in nature. Thus, the conformation of any particular epitope recognized by a Mab may be important in determining to which nematode a particular spore will attach. The distribution of a particular epitope within a population of spores will in turn therefore determine its virulence on a particular nematode.


Assuntos
Bactérias Gram-Positivas Formadoras de Endosporo/patogenicidade , Tylenchoidea/microbiologia , Animais , Anticorpos Monoclonais , Aderência Bacteriana/fisiologia , Eletroforese em Gel de Poliacrilamida , Epitopos/análise , Bactérias Gram-Positivas Formadoras de Endosporo/imunologia , Immunoblotting , Esporos/imunologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...